

KARNATAK UNIVERSITY, DHARWAD ACADEMIC (S&T) SECTION ಕರ್ನಾಟಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಧಾರವಾಡ ವಿದ್ಯಾಮಂಡಳ (ಎಸ್&ಟಿ) ವಿಭಾಗ



Tele: 0836-2215224 e-mail: academic.st@kud.ac.in Pavate Nagar,Dharwad-580003 ಪಾವಟೆ ನಗರ, ಧಾರವಾಡ – 580003

NAAC Accredited 'A' Grade 2014

website: kud.ac.in

Date: 2 9 0 C T 2021

No.KU/Aca(S&T)/RPH-394A/2021-22 /155

ಅಧಿಸೂಚನೆ .

ವಿಷಯ: 2021–22ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಎಲ್ಲ ಸ್ನಾತಕ ಕೋರ್ಸಗಳಿಗೆ 1 ಮತ್ತು 2ನೇ ಸೆಮೆಸ್ಟರ್ NEP-2020 ಮಾದರಿಯ ಪಠ್ಯಕ್ರಮವನ್ನು ಅಳವಡಿಸಿರುವ ಕುರಿತು. ಉಲ್ಲೇಖ: 1. ಸರ್ಕಾರದ ಅಧೀನ ಕಾರ್ಯದರ್ಶಿಗಳು(ವಿಶ್ವವಿದ್ಯಾಲಯ 1) ಉನ್ನತ ಶಿಕ್ಷಣ ಇಲಾಖೆ ಇವರ ಆದೇಶ

- ಸಂಖ್ಯೆ: ಇಡಿ 260 ಯುಎನ್ಇ 2019(ಭಾಗ–1), ದಿ:7.8.2021.
- 2. ವಿಶೇಷ ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ನಿರ್ಣಯ ದಿನಾಂಕ: 19.08.2021

3. ಈ ಕಚೇರಿ ಸುತ್ತೋಲೆ ಸಂ.No. KU/Aca(S&T)/RPH-394A/2021-22/18 ದಿ:21.08.2021.

4. ಸರ್ಕಾರಿ ಆದೇಶ ಸಂ ಇಡಿ 260 ಯುಎನ್ಇ 2019(ಭಾಗ-1),ಬೆಂಗಳೂರು ದಿ. 15.9.2021.

5. ಎಲ್ಲ ಅಭ್ಯಾಸಸೂಚಿ ಮಂಡಳಿ ಸಭೆಗಳ ನಡವಳಿಗಳು

6. ಎಲ್ಲ ನಿಖಾಯಗಳ ಸಭೆಗಳು ಜರುಗಿದ ದಿನಾಂಕ: 24,25-09-2021.

7. ವಿಶೇಷ ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ನಿರ್ಣಯ ಸಂಖ್ಯೆ: 01 ದಿನಾಂಕ: 28.9.2021.

8. ಈ ಕಚೇರಿ ಸುತ್ತೋಲೆ ಸಂ.No. KU/Aca(S&T)/RPH-394A/2021-22/954 ದಿ:30.09.2021.

9. ಎಲ್ಲ ನಿಖಾಯದ ಡೀನರು / ಸಂಪನ್ಮೂಲ ತಜ್ಞರ ಸಭೆ ದಿನಾಂಕ 21.10.2021.

10. ಎಲ್ಲ ಸ್ನಾತಕ ಅಭ್ಯಾಸಸೂಚಿ ಮಂಡಳಿ ಅಧ್ಯಕ್ಷರುಗಳ ಸಭೆ ದಿನಾಂಕ 22.10.2021.

- 11. ವಿಶೇಷ ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ನಿರ್ಣಯ ಸಂಖ್ಯೆ: 01 ದಿನಾಂಕ: 27.10.2021.
- 12. ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಆದೇಶ ದಿನಾಂಕ: 29-10-2021

ಮೇಲ್ಕಾಣಿಸಿದ ವಿಷಯ ಹಾಗೂ ಉಲ್ಲೇಖಗಳನ್ವಯ ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಆದೇಶದ ಮೇರೆಗೆ, 2021–22ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಅನ್ವಯವಾಗುವಂತೆ, ಎಲ್ಲ B.A./ BPA (Music)/BVA/ BTTM/ BSW/ B.Sc./B.Sc. Pulp & Paper Science/ B.Sc. (H.M)/ BCA/ B.A.S.L.P./ B.Com/ B.Com (CS)/ & BBA ಸ್ನಾತಕ ಕೋರ್ಸಗಳ 1 ಮತ್ತು 2ನೇ ಸೆಮೆಸ್ಟರ್ಗಳಿಗೆ NEP-2020 ರಂತೆ ವಿಶೇಷ ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ಅನುಮೊದಿತ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಈಗಾಗಲೇ ಪ್ರಕಟಪಡಿಸಿದ್ದು, ಮುಂದೆ ದಿನಾಂಕ 04.10.2021 ವರೆಗೆ ಸರಕಾರವು ಕಾಲಕಾಲಕ್ಕೆ ನೀಡಿದ ನಿರ್ದೇಶನಗಳನ್ನು ಅಳವಡಿಸಿಕೊಂಡು ದಿನಾಂಕ 27.10.2021 ರಂದು ಜರುಗಿದ ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯಲ್ಲಿ ಅನುಮೊದನೆ ಪಡೆದು ಕ.ವಿ.ವಿ. ಅಂತರ್ಜಾಲ <u>www.kud.ac.in</u> ದಲ್ಲಿ ಭಿತ್ತರಿಸಲಾಗಿದೆ. ಸದರ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಕ.ವಿ.ವಿ. ಅಂತರ್ಜಾಲದಿಂದ ಡೌನಲೋಡ ಮಾಡಿಕೊಳ್ಳಲು ಸೂಚಿಸುತ್ತ ವಿದ್ಯಾರ್ಥಿಗಳ ಹಾಗೂ ಸಂಬಂಧಿಸಿದ ಎಲ್ಲ ಬೋಧಕರ ಗಮನಕ್ಕೆ ತಂದು ಅದರಂತೆ ಕಾರ್ಯಪ್ರವೃತ್ತರಾಗಲು ಕವಿವಿ ಅಧೀನದ/ಸಂಲಗ್ಯ ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ ಸೂಚಿಸಲಾಗಿದೆ.

auf 29/10/24 ಕುಲಸಚಿವರು.

ಅಡಕ: ಮೇಲಿನಂತೆ ಗೆ,

ಕರ್ನಾಟಕ ವಿಶ್ವವಿದ್ಯಾಲಯದ ವ್ಯಾಪ್ತಿಯಲ್ಲಿ ಬರುವ ಎಲ್ಲ ಅಧೀನ ಹಾಗೂ ಸಂಲಗ್ನ ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ. (ಕ.ವಿ.ವಿ. ಅಂರ್ತಜಾಲ ಹಾಗೂ ಮಿಂಚಂಚೆ ಮೂಲಕ ಬಿತ್ತರಿಸಲಾಗುವುದು) ಪ್ರತಿ:

- 1. ಕುಲಪತಿಗಳ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 2. ಕುಲಸಚಿವರ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 3. ಕುಲಸಚಿವರು (ಮೌಲ್ಯಮಾಪನ) ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- ಅಧೀಕ್ಷಕರು, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ / ಗೌಪ್ಯ / ಜಿ.ಎ.ಡಿ. / ವಿದ್ಯಾಂಡಳ (ಪಿ.ಜಿ.ಪಿಎಚ್.ಡಿ) ವಿಭಾಗ, ಸಂಬಂಧಿಸಿದ ಕೋರ್ಸುಗಳ ವಿಭಾಗಗಳು ಪರೀಕ್ಷಾ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 5. ನಿರ್ದೇಶಕರು, ಕಾಲೇಜು ಅಭಿವೃದ್ಧಿ / ವಿದ್ಯಾರ್ಥಿ ಕಲ್ಯಾಣ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.



## KARNATAK UNIVERSITY, DHARWAD

# 04 - Year B.Sc. (Hons.) Program

\*\*\*

**SYLLABUS** 

Subject: ELECTRONICS

[Effective from 2021-22]

DISCIPLINE SPECIFIC CORE COURSE (DSCC) FOR SEM I & II,

**OPEN ELECTIVE COURSE (OEC) FOR SEM I & II and** 

SKILL ENHANCEMENT COURSE (SEC) FOR SEM I

**AS PER N E P - 2020** 

## Karnatak University, Dharwad Four Years Under Graduate Program in ELECTRONICS for B.Sc. (Hons.) Effective from 2021-22

| Sem | Type of<br>Course                                  | Theory/<br>Practical | Instruction<br>hour per<br>week | Total<br>hours of<br>Syllabus<br>/ Sem | Duration<br>of Exam | Formative<br>Assessme<br>nt Marks | Summat<br>ive<br>Assess<br>ment<br>Marks | Total<br>Marks | Credits |  |
|-----|----------------------------------------------------|----------------------|---------------------------------|----------------------------------------|---------------------|-----------------------------------|------------------------------------------|----------------|---------|--|
| Ι   | DSCC 1                                             | Theory               | 04hrs                           | 56                                     | 02 hrs              | 40                                | 60                                       | 100            | 04      |  |
|     |                                                    | Practical            | 04 hrs                          | 52                                     | 03 hrs              | 25                                | 25                                       | 50             | 02      |  |
|     | OEC-1                                              | Theory               | 03 hrs                          | 42                                     | 02 hrs              | 40                                | 60                                       | 100            | 03      |  |
|     | *SEC-1                                             | Practical            | 03 hrs                          | 30                                     | 02 hrs              | 25                                | 25                                       | 50             | 02      |  |
| II  | DECCO                                              | Theory               | 04 hrs                          | 56                                     | 02 hrs              | 40                                | 60                                       | 100            | 04      |  |
|     | DSCC2                                              | Practical            | 04 hrs                          | 52                                     | 03 hrs              | 25                                | 25                                       | 50             | 02      |  |
|     | OEC-2                                              | Theory               | 03 hrs                          | 42                                     | 02 hrs              | 40                                | 60                                       | 100            | 03      |  |
|     | Details of the other Semesters will be given later |                      |                                 |                                        |                     |                                   |                                          |                |         |  |

\* Student can opt digital fluency as SEC or the SEC of his/ her any one DSCC selected

#### Name of Course (Subject): ELECTRONICS

#### **Programme Specific Outcome (PSO):**

On completion of the 03/04 years Degree in **ELECTRONIC**S students will be able to:

- PSO 1: Provide students with learning experiences that provide broad knowledge and understanding of key concepts of Electronics and equip students with advanced scientific / technological capabilities for analysing and tackling then issues and problems in the field od Electronics.
- **PSO 2:**Develop ability in students to apply knowledge and skills they have acquired to solve specific theoretical and applied problems in Electronics
- **PSO3**: Develop abilities in students to design and develop innovative solutions for the benefit of society.
- **PSO4:** Provide students with skills that enable them to get employment in industries or pursue higher studies or research assignments or turn as enterpreneurs.

## **B.Sc. Semester – I**

#### Subject: ELECTRONICS

**Discipline Specific Course (DSC)** 

The course **ELECTRONICS** in I semester has two papers (Theory Paper –I for 04 credits & Practical Paper -II for 2 credits) for 06 credits: Both the papers are compulsory. Details of the courses are as under.

#### Course No.-1 (Theory)

| Course<br>No. | Type of<br>Course | Theory /<br>Practical | Credits | Instruction<br>hour per<br>week | Total No. of<br>Lectures/Hours<br>/ Semester | Duration<br>of Exam | Formative<br>Assessment<br>Marks | Summative<br>Assessmen<br>t Marks | Total<br>Marks |
|---------------|-------------------|-----------------------|---------|---------------------------------|----------------------------------------------|---------------------|----------------------------------|-----------------------------------|----------------|
| Course-<br>01 | DSCC              | Theory                | 04      | 04                              | 56 hrs                                       | 2hrs                | 40                               | 60                                | 100            |

Course No.1 (Theory): Title of the Course (Theory) ELECTRONIC DEVICES AND CIRCUITS

#### Course Outcome (CO):

After completion of course (Theory), students will be able to:

- CO1: Ability to apply knowledge of logical thinking and basic science for solving Electronic related issues.
- CO2:. Ability to perform Electronic experiments, as well as to analyse and interpret data.
- CO3. Ability to design and manage electronic system or processes that conform to a given specification within ethical and economic constraints.
- CO4:. Ability to identify, formulate, solve and analyse the problems in various sub-disciplines of Electronics.
- CO5: Ability to use modern tools / techniques.

| Syllabus- Course 1(Theory): Title- ELECTRONIC DEVICES AND CIRCUITS                    | Total Hrs: 56 |
|---------------------------------------------------------------------------------------|---------------|
| Unit-I                                                                                | 14 hrs        |
| Electronic Components: Electronic passive and active components, types and their      |               |
| properties, Concept of Voltage and Current Sources, electric energy and power.        |               |
| (Qualitative only)                                                                    |               |
| Network Theorems: Superposition, Thevenin's, Norton's, Maximum Power Transfer,        |               |
| and Reciprocity Theorems. DC and AC analysis of RC and RL circuits, RLC series and    |               |
| parallel Resonant Circuits.                                                           |               |
| PN junction diode: Ideal and practical diodes, Formation of Depletion Layer, Diode    |               |
| Equation and I-V characteristics. Idea of static and dynamic resistance, Zener diode, |               |
| Reverse saturation current, Zener and avalanche breakdown.                            |               |

| Rectifiers-Half wave and Full wave (center tap and bridge) rectifiers, expressions for                  |        |
|---------------------------------------------------------------------------------------------------------|--------|
| output voltage, ripple factor and efficiency (mention only), Shunt capacitor filter. (Solve             |        |
| Numerical examples wherever applicable).                                                                |        |
| Unit-II                                                                                                 | 14 hrs |
| Voltage regulator: Block diagram of regulated power supply, Line and Load regulation,                   |        |
| Zener diode as voltage regulator - circuit diagram, load and line regulation,                           |        |
| disadvantages. Fixed and Variable IC Voltage Regulators (78xx, 79xx, LM317),                            |        |
| Clippers (shunt type) and clampers(Qualitative analysis only), Voltage Multipliers.                     |        |
| Bipolar Junction Transistor: Construction, types, C-E,C-B and C-C configurations                        |        |
| (mention only), VI characteristics of a transistor in C-E mode, Regions of operation                    |        |
| (active, cut off and saturation), leakage currents (mention only), Current gains $\alpha$ , $\beta$ and |        |
| and their inter-relations, dc load line and Q point. Applications of transistor as amplifier            |        |
| and switch - circuit and working. (Numerical examples wherever applicable).                             |        |
| Unit-III                                                                                                | 14 hrs |
| Transistor Biasing and Stabilization Circuits: Fixed Bias and Voltage Divider Bias.                     |        |
| Thermal runaway, stability and stability factor. Transistor as a two-port network, h-                   |        |
| parameter equivalent circuit. Amplifier: Small signal analysis of single stage C-E                      |        |
| amplifier using h-parameters. Input and Output impedances, Current and Voltage gains.                   |        |
| Advantages of C-C amplifier. Class A, B and C Amplifiers (qualitative). Types of                        |        |
| coupling, Two stage RC Coupled Amplifier - circuit, working and its Frequency                           |        |
| Response, loading effect, GBW product, Darlington transistor, Current gain.                             |        |
| Special Semiconductor Diodes: Varactor diode, Schottky diode, Tunnel diode, -                           |        |
| construction, characteristics, working, symbol, and applications for each.LED, LCD and                  |        |
| solar cell - construction, operation and applications, 7-segment display, concept of                    |        |
| common anode and common cathode types.(Numerical problems, wherever applicable)                         |        |
| Unit-IV                                                                                                 | 14 hrs |
| Number System: Decimal, Binary, Octal and Hexadecimal number systems, base                              |        |
| conversions. Representation of signed and unsigned numbers, Binary arithmetic;                          |        |
| addition, subtraction by 1's and 2's complement method, BCD code (8421, 2421,                           |        |
| Excess-3), Gray code, error checking and correction codes (Only parity check). Boolean                  |        |
| Algebra: Constants, variables, operators, basic logic gates-AND, OR, NOT, Positive                      |        |
| and negative logic, Boolean laws, Duality Theorem, De Morgan's Theorem,                                 |        |
| simplification of Boolean expressions-SOP and POS. Derived logic gates (NAND,                           |        |
| NOR, XOR & XNOR). Universal property of NOR and NAND gates. (Numerical                                  |        |
| examples wherever applicable).                                                                          |        |

- 1. Robert L Boylestad, "Introductory circuit analysis", 5th edition., Universal Book 2003.
- 2. R.S.Sedha, "A Text book of Applied Electronics", 7th edition., S. Chand and Company Ltd. 2011
- 3. A.P. Malvino, "Principles of Electronics", 7th edition .TMH, 2011.
- 4. Electronic devices and circuit theory by Boylestad, Robert Nashelsky
- David A. Bell "Electronic Devices and Circuits", 5th Edition, Oxford Uni. Press, 2015
- 6. Thomas L. Floyd, Digital Fundamentals, Pearson Education Asia (1994)
- 7. Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw
- 8. Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.
- 9. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- 10. Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning.
- 11. M. Nahvi& J. Edminister, "Electrical Circuits", Schaum's Outline SeriesTMGH2005
- 12. S. A. Nasar," Electrical Circuits", Schaum's outline series, Tata McGraw Hill, 2004
- 13. J. Millman and C. C. Halkias, "Integrated Electronics", Tata McGraw Hill,
- A.S. Sedra, K.C. Smith, A.N. Chandorkar "Microelectronic circuits", 6th Edn., Oxford University Press, 2014
- J. J. Cathey, "2000 Solved Problems in Electronics", Schaum's outline Series, TMG1991

2001

### **B.Sc. Semester – I**

#### Subject: ELECTRONICS Discipline Specific Course (DSC)

#### **Course No.-1 (Practical)**

| Course<br>No. | Type of<br>Course | Theory /<br>Practical | Credits | Instruction<br>hour per<br>week | Total No. of<br>Lectures/Hours<br>/ Semester | Duration<br>of Exam | Formative<br>Assessment<br>Marks | Summative<br>Assessmen<br>t Marks | Total<br>Marks |
|---------------|-------------------|-----------------------|---------|---------------------------------|----------------------------------------------|---------------------|----------------------------------|-----------------------------------|----------------|
| Course-<br>01 | DSCC              | Practic<br>al         | 02      | 04                              | 52 hrs                                       | 3hrs                | 25                               | 25                                | 50             |

Course No.1 (Practical): Title of the Course (Practical): ELECTRONIC DEVICES AND CIRCUITS

#### Course Outcome (CO):

After completion of course (Practical), students will be able to:

- CO1. Study and analyze basic networks using network theoremsin a systematic manner.
- CO2. Build simple electronic circuits used in various applications.
- **CO3.** Describe the behaviour of basic semiconductor devices
- CO4. Reproduce the VI characteristics of diode/BJT devices
- CO5. Describe the frequency response of BJT amplifiers.
- **CO6.** Explain the behaviour, characteristics and applications of Varactor diode, Schottky diode, Tunnel diode, LED, LCD and solar cells.
- **CO7.** Apply standard device models to explain/calculate critical internal parameters of semiconductor devices.
- **CO8.** Understand and represent numbers in powers of base and converting one from the other, carry out simple arithmetic operations.
- **CO9.** Understand the basic knowledge of Digital system building blocks, effectively can construct simple digital designs with the knowledge of Boolean algebra.

#### List of the Experiments for 52 hrs / Semesters

(Hardware implementation and Analysis of Circuit using Simulation Software) Minimum Four Experiments to be performed in each Part excluding demonstration experiments

#### 1. Demonstration Experiment: Familiarization with

- a) Electronic components
- b) Resistance in series, parallel and series-parallel
- c) Capacitors and inductors in series and parallel
- d) Multimeter and LCR meter checking of components / measurements.
- e) Voltage sources in series, parallel and series-parallel
- f) Voltage and current dividers
- g) Measurement of Amplitude, Frequency & Phase difference using Oscilloscope

#### Part A (Any Four)

- 2. Verification of Thevenin's and Maximum Power Transfer Theorem.
- 3. Verification of Superposition Theorem.
- 4. Study of the VI Characteristics of (a) P-N junction diode (b) Zener diode.
- 5. Study of the I-V Characteristics of LEDs of two different colours and 7segment display.
- 6. Study of Half wave rectifier without and with shunt capacitor filter– ripple factor for different values of filter capacitors.
- 7. Study of full wave bridge rectifier without and with shunt capacitor filter ripple factor for different values of filter capacitors.
- 8. Study of Zener diode as a Voltage Regulator using bridge rectifier with shunt capacitor filter [Load and line regulation].
- 9. Study of Clipping, Clamping and Voltage Multiplier circuits.
- 10. Designing and testing of fixed positive and negative voltage regulators using 78xx and 79xx series ICs (Using bridge rectifier and shunt capacitor filter).
- 11. Designing and testing of variable voltage regulator using IC LM317 (Using bridge rectifier and shunt capacitor filter).

#### Part B (Any Four experiments including Experiment No 14)

- 12. Study of Transistor characteristics in CE configuration determination of hparameters.
- 13. Study of Fixed Bias and Voltage divider bias circuits comparison for different values of  $\beta$ .
- 14. Study of single stage RC coupled C-E amplifier (frequency response, input and output impedances in mid-band)
- 15. Study of two-stage RC-coupled CE amplifier (AV1, AV2, AV) at mid-band frequency.
- 16. Study of Series and Parallel Resonance circuits determination of its (a) Resonant frequency (b) Impedance at resonance (c) Bandwidth (d) Quality Factor.
- 17. Verification of truth tables of OR, AND, NOT, NAND, NOR, XOR and XNOR gates using corresponding ICs. Realization of XOR and XNOR using basic gates.
- 18. Universal property of NAND and NOR gates.
- 19. Binary to Gray and Gray to Binary code conversion and parity checker using XOR gates IC 7486

#### General instructions:

- 1. Minimum of eight experiments to be performed.
- 2. Any new experiment may be added to the list with the prior approval from the BOS.

Scheme of Practical Examination (distribution of marks): 25 marks for Semester end examination

| 1 | Basicformula, Units&Natureofgraph,                       |              |       |
|---|----------------------------------------------------------|--------------|-------|
|   | CircuitDiagram/RayDiagram/Schematicdiagram               | - 05         | Marks |
| 2 | Tabular Column with quantities and unitmentioned,        |              |       |
|   | experimental skills.                                     | - 05         | Marks |
| 3 | Recording of observations, calculations and drawing grap | p <b>h</b> , |       |
|   | and accuracyof the result                                | - 11         | Marks |
| 4 | Viva-voce                                                | - 02         | Marks |
| 5 | Completed & Certified Journal                            | - 02         | Marks |
|   |                                                          | Total 25 r   | narks |
|   |                                                          |              |       |

Note: Same Scheme may be used for IA (Formative Assessment) examination

## **B.Sc. Semester – I**

#### Subject: ELECTRONICS Open Elective Course (OEC-1) (OEC for other students)

| Course<br>No. | Type of<br>Course | Theory /<br>Practical | Credits | Instruction<br>hour per<br>week | Total No. of<br>Lectures/Hours<br>/ Semester | Duration<br>of Exam | Formative<br>Assessment<br>Marks | Summative<br>Assessmen<br>t Marks | Total<br>Marks |
|---------------|-------------------|-----------------------|---------|---------------------------------|----------------------------------------------|---------------------|----------------------------------|-----------------------------------|----------------|
| OEC-1         | OEC               | Theory                | 03      | 03                              | 42 hrs                                       | 2hrs                | 40                               | 60                                | 100            |

## OEC-1: Title of the Course $BASIC\ ELECTRONICS\ -I$

| Syllabus- OEC: Title- BASIC ELECTRONICS -I                                                                      | Total Hrs: 42 |
|-----------------------------------------------------------------------------------------------------------------|---------------|
| Unit-I                                                                                                          | 14 hrs        |
| Introduction to Electronics and Principles of Electricity:                                                      |               |
| Introduction to Electronics: Electronics and its scope: Development of vacuum tube                              |               |
| devices, semiconductor devices, integrated circuits, microprocessors and microcontrollers.                      |               |
| Applications of electronics-entertainment, communication, defense, industrial, medical                          |               |
| Impact of electronics on quality of life                                                                        |               |
| <b>Principles of Electricity:</b> Charge-positive and negative charges, properties of charges,                  |               |
| charge of an electron, number of electrons in one Coulomb of charge, electric current-                          |               |
| current Potential difference and its unit related to electric circuit. Ohm's law statement and                  |               |
| limitations application to circuits Resistance and its unit electric power electric energy                      |               |
| Combinations of resistors open and short circuit Kirchhoff's current law and Kirchhoff's                        |               |
| voltage law, current and voltage division.                                                                      |               |
| Sufficient number of numerical problems must be solved.                                                         |               |
|                                                                                                                 |               |
|                                                                                                                 |               |
| Unit-II                                                                                                         | 14 hrs        |
| Passive Electronic components, Application of DC and AC to Passive components                                   |               |
| <b>Passive Electronic components</b> : Introduction, resistors, types of resistors, capacitors,                 |               |
| principle of capacitor, energy stored in a capacitor, types of capacitors, and combination                      |               |
| of capacitors. Inductors, self-inductance, mutual-inductance, combination of inductors,                         |               |
| energy stored in an inductor, choke, transformer, types of transformer, transducers,                            |               |
| Application of DC and AC to Passive components: DC time constant charging of                                    |               |
| Application of DC and AC to Fassive components. RC time constant, charging of capacitor through resistor (decay |               |
| voltage) L/R time constant growth and decay of current through R-L circuit AC                                   |               |
| applied to passive component: LCR series, resonance circuit, quality factor, bandwidth.                         |               |
| RC low pass and high pass filter.                                                                               |               |
| Sufficient number of numerical problems must be solved                                                          |               |
|                                                                                                                 |               |

| Unit-III                                                                                      | 14 hrs |
|-----------------------------------------------------------------------------------------------|--------|
| Current and voltage sources and Network theorems:                                             |        |
| Current and voltage sources: Sources of electric power, internal impedance of a source,       |        |
| Concept of voltage source: ideal voltage source, practical voltage source. Concept of current |        |
| source: ideal current source, practical current source, equivalence between voltage source    |        |
| and current source, conversion of voltage source into current source and vice versa.          |        |
| Network Theorems: Thevenin's, Norton's theorem statement and proof, Super position            |        |
| theorem, statement, analysis with two voltage sources and Maximum power transfer              |        |
| theorem-statement (derivation) all theorems with respect to DC circuit.                       |        |
| Sufficient number of numerical problems must be solved.                                       |        |

- 1. Basics of Electronics (Solid State) BL Theraja
- 2. Basics Electronics and linear circuits N N Bhargava and others.
- 3. Electronic principles -- B. Basavaraja Vol-1
- 4. Handbook of Electronics—Gupta Kumar
- 5. Basic and applied Electronics bandyopadhyay
- 6. Electronics-- Dr. R. K. Kar
- 7. Electronic Devices and Circuits David A. Bell
- 8. Principles of Electronics V. K. Mehta and Rohit Mehta

## **B.Sc. Semester - I**

#### Subject: ELECTRONICS SKILL ENHANCEMENT COURSE (SEC)-I

### Title of Paper: - Domestic Equipment Maintenance and measuring Instruments

| Type of<br>Course | Theory /<br>Practical | Credits | Instruction<br>hour per<br>week | Total No. of<br>Lectures/Hours<br>/ Semester | Mode of<br>Examina<br>tion | Duration of<br>Exam | Formative<br>Assessment<br>Marks | Summative<br>Assessmen<br>t Marks | Total<br>Marks |
|-------------------|-----------------------|---------|---------------------------------|----------------------------------------------|----------------------------|---------------------|----------------------------------|-----------------------------------|----------------|
| SEC-I             | Theory +<br>Practical | 02      | 03hrs                           | 30                                           | Practical                  | 2hr                 | 25                               | 25                                | 50             |

#### Unit-1

#### **15 Hours**

Basics of Electronics: concept of Voltage, Current, Power, AC and DC sources. Ohms law.

**Electronic Components:** Passive components, resistors, inductors, capacitors, and their types. Series and parallel combination, semiconductor diode- ideal and practical diode, VI characteristics, Zener diode-Construction, working and its VI characteristics. application of semiconductor diode as full wave rectifier, ripple factor and its efficiency. Zener diode as voltage regulator. Block diagram of regulated power supply

#### List of the Experiments for 52 hrs / Semesters

- 1. Charging of Capacitors (Parallel combination, Series combination etc.,),
- 2. Measurement of Resistors using Ohm meter, Measurement of Capacity of a capacitor.
- 3. Semiconductor diode V-I Characteristics,
- 4.. Half Wave Rectifiers/ Full Wave Rectifier
- 5. Zener diode Charaacteristics
- 6. Zener as voltage regulator using full wave rectifier
- 7. Using Resistive network study of star to delta network conversion or vice-versa. Show that they are equivalent

#### Unit-2

#### **15 Hours**

**Measuring Instruments:** Analog and digital instruments, permanent magnet moving mechanism, converting basic meter into DC multirange voltmeter and multirange ammeter. Ohmmeter-series and shunt type (qualitative), multimeter. CRO: application of CRO for measurement of voltage, and frequency. Lissajous figures.

#### List of the Experiments for 52 hrs / Semesters

- 1. Measurement of voltage, current using multimeter, construction of multirange voltmeter, current meter.
- 2. Conversting basic meter into D. C. Voltmeter/Ammeter
- 3. Measurement of voltage and frequency using CRO, Lissajous figures
- 4. Soldering and desoldering Tecnique: Students will acquire a skill of soldering discrite components of a given circuit on general PCB and check the working of the circuit.
- 5. Experimental study of KVL and KCL using DC source and resistive network.
- 6. Calibration of analog voltmeter and ammeter.
- 7. Basics and working of Battery Eliminators/ battery charger

General instructions:

- 1. Minimum of eight experiments to be performed.
- 2. Any new experiment may be added to the list with the prior approval from the BOS.

Scheme of Practical Examination (distribution of marks): 25 marks for Semester end examination

| 1. | Basicformula,Units&Natureofgraph,                                                 |                  |
|----|-----------------------------------------------------------------------------------|------------------|
|    | CircuitDiagram/RayDiagram/Schematicdiagram                                        | -05 Marks        |
| 2. | Tabular Column with quantities and unitmentioned, experimental skills.            | -05 Marks        |
| 3  | Recordingofobservations, calculations and drawing graph and accuracyof the result | n,<br>- 11 Marks |
| 4. | Viva-voce                                                                         | -02 Marks        |
| 5  | Completed & Certified Journal                                                     | -02 Marks        |
|    |                                                                                   | Total 25 marks   |

#### Note: Same Scheme may be used for IA (Formative Assessment) examination

Books recommended.

- 1. Electronic instruments and systems: Principles, maintenance and troubleshooting by R. G. Gupta Tata McGraw Hill.
- 2. Modern electronic equipment: Troubleshooting, repair and maintenance by Khandpur, Tata McGraw Hill
- 3. Electronic fault diagnosis by G. C. Loveday, A. H. Wheeler publishing Modern Electronics Instrumentation and measurement techniques- Helfrick Cooper
- 4. Basics of Electronics (Solid State) BL

#### Details of Formative assessment (IA) for DSCC theory/OEC: 40% weight age for total marks

| Type of Assessment      | Weight age                                            | Duration   | Commencement          |
|-------------------------|-------------------------------------------------------|------------|-----------------------|
| Written test-1          | 10%                                                   | 1 hr       | 8 <sup>th</sup> Week  |
| Written test-2          | 10%                                                   | 1 hr       | 12 <sup>th</sup> Week |
| Seminar                 | 10%                                                   | 10 minutes |                       |
| Case study / Assignment | 10%                                                   |            |                       |
| / Field work / Project  |                                                       |            |                       |
| work/ Activity          |                                                       |            |                       |
| Total                   | 40% of the maximum<br>marks allotted for the<br>paper |            |                       |

#### Faculty of Science 04 - Year UG Honors programme:2021-22

# GENERAL PATTERN OF THEORY QUESTION PAPER FOR DSCC/ OEC (60 marks for semester end Examination with 2 hrs duration)

#### Part-A

1. Question number 1-06 carries 2 marks each. Answer any 05 questions : 10 marks

#### Part-B

2. Question number 07-11 carries 05Marks each. Answer any 04 questions : 20 marks

#### Part-C

**3.** Question number 12-15 carries 10 Marks each. Answer any 03 questions : 30 marks

(Minimum 1 question from each unit and 10 marks question may have sub questions for 7+3 or 6+4 or 5+5 if necessary)

#### Total: 60 Marks

Note: Proportionate weight age shall be given to each unit based on number of hours prescribed.



## **B.Sc. Semester – II**

## Subject: ELECTRONICS

**Discipline Specific Course (DSC)** 

The course **ELECTRONICS** in II semester has two papers (Theory Paper –I for 04 credits & Practical paper-II for 2 credits) for 06 credits: Both the papers are compulsory. Details of the courses are as under.

#### Course No.-2 (Theory)

| Course<br>No. | Type of<br>Course | Theory /<br>Practical | Credits | Instruction<br>hour per<br>week | Total No. of<br>Lectures/Hours<br>/ Semester | Duration<br>of Exam | Formative<br>Assessment<br>Marks | Summative<br>Assessmen<br>t Marks | Total<br>Marks |
|---------------|-------------------|-----------------------|---------|---------------------------------|----------------------------------------------|---------------------|----------------------------------|-----------------------------------|----------------|
| Course-<br>02 | DSCC              | Theory                | 04      | 04                              | 56 hrs                                       | 2hrs                | 40                               | 60                                | 100            |

Course No.2 (Theory): Title of the Course (Theory) : ANALOG AND DIGITAL ELECTRONICS

### Course Outcome (CO):

After completion of course (Theory), students will be able to:

- CO1. Reproduce the VI characteristics of various MOSFET devices,
- **CO2.** Apply standard device models to explain/calculate critical internal parameters of semiconductor devices.
- **CO3.** Explain the behavior and characteristics of power devices such as UJT, SCR, Diac, Triac etc.
- CO4. Perform experiments for studying the behavior of semiconductor devices.
- CO5. Calculate various device parameter values from their VI characteristics.
- CO6. Interpret the experimental data for better understanding the device behaviour.
- **CO7.** Understand basic logic gates, concepts of Boolean algebra and techniques to reduce/simplify Boolean expressions
- CO8. Analyze combinatorial and sequential circuits

| Syllabus- Course 2(Theory): Title- ANALOG AND DIGITAL ELECTRONICS                                                     | Total Hrs: 56 |
|-----------------------------------------------------------------------------------------------------------------------|---------------|
| Unit-I                                                                                                                | 14 hrs        |
| JFET: Types - p-channel and n-channel, working and VI characteristics, n-channel                                      |               |
| JFET, parameters and their relationships, Comparison of BJT and JFET.                                                 |               |
| MOSFET: Depletion and enhancement type MOSFET, n-channel and p-channel,                                               |               |
| Construction, working, symbols, biasing, drain and transfer characteristics, VMOS,                                    |               |
| UMOS Power MOSFETs, handling, MOS logic, symbols and switching action of MOS,                                         |               |
| NMOS inverter, CMOS logic, CMOS - inverter, circuit and working, CMOS                                                 |               |
| characteristics, IGBT construction and working.                                                                       |               |
| UJT - construction, working, equivalent circuit and VI characteristics, intrinsic stand-off                           |               |
| ratio, relaxation oscillator.                                                                                         |               |
| SCR - Construction, VI characteristics, working, symbol, and applications – HWR and                                   |               |
| FWR.                                                                                                                  |               |
| <b>Diac and Triac</b> -construction, working, characteristics, applications, (Numerical examples wherever applicable) |               |
|                                                                                                                       |               |

| Unit-II                                                                                           | 14 hrs |
|---------------------------------------------------------------------------------------------------|--------|
| <b>Op-Amp:</b> Differential Amplifier, Block diagram of Op-Amp, Characteristics of an Ideal       |        |
| and Practical Op-Amp, Open and closed loop configuration, Frequency Response,                     |        |
| CMRR, Slew Rate and concept of Virtual Ground.                                                    |        |
| Applications of op-amps: Concept of feedback, negative and positive feedback,                     |        |
| advantages of negative feedback (Qualitative Study). Inverting and non-inverting                  |        |
| amplifiers, Summing and Difference Amplifier, Differentiator, Integrator, Comparator              |        |
| and Zero-crossing detector                                                                        |        |
| Filters: First and second order active low pass, high pass and band pass Butterworth              |        |
| filters.                                                                                          |        |
| Oscillators: Barkhausen criterion for sustained oscillations, Collpitt's oscillator and           |        |
| crystal oscillators using transistor, Phase Shift oscillator, Wien-bridge oscillator - (no        |        |
| derivation for each)                                                                              |        |
| IC 555Timer: Introduction, Block diagram, Astable and Monostable multivibrator                    |        |
| circuits. (Numerical Examples wherever applicable).                                               |        |
| Unit-III                                                                                          | 14 hrs |
| Logic Families: Pulse characteristics, Logic Families-classification of digital ICs.              |        |
| Characteristics of logic families, circuit description of TTL NAND gate with totem pole           |        |
| and open collector. TTL IC terminology. CMOS NAND, comparison of TTL and CMOS                     |        |
| families.                                                                                         |        |
| Combinational Logic Circuits: Minimisation techniques using K-maps - SOP and                      |        |
| POS, Minterm, Maxterm, SSOP, SPOS, Simplification of Boolean expressions, KMap                    |        |
| for 3 and 4 variable.                                                                             |        |
| Digital to Analog converter: DAC with binary weighted resistor and R-2R resistor                  |        |
| ladder network. Analog to Digital converter: Successive approximation method -                    |        |
| performance characteristics.                                                                      |        |
| Design of Arithmetic logic circuits: Half Adder, Full Adder, Half Subtractor, Full Subtractor, 4- |        |
| bit parallel binary adder, 2-bit and 4-bit magnitude comparator. Encoder, decimal to BCD          |        |
| priority encoder. Decoder, 2:4 decoder using AND gates, 3:8 decoder using NAND gates, BCD         |        |
| to decimal decoder, BCD to 7-Segment decoder, Multiplexer - 4:1 and 8:1 multiplexer,              |        |
| Demultiplexer, 1:4 and 1:8 demultiplexer - logic diagram and truth table of each, Realization     |        |
| of Full adder and Full Subtractor using Mux and Decoder                                           |        |
| Unit-IV                                                                                           | 14 hrs |
| Sequential Logic Circuits: Flip-Flops - SR Latch, RS, D and JK Flip-Flops. Clocked                |        |
| (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Racearound                    |        |
| conditions in JK Flip-Flop. Master- Slave JK and T Flip-Flops. Applications of Flip-              |        |
| Flops in semiconductor memories, RAM, ROM and types.                                              |        |
| Registers and Counters: Types of Shift Registers, Serial-in-Serial-out, Serial-in                 |        |
| Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to     |        |
| 4 bits), applications. Ring counter, Johnson counter applications. Asynchronous                   |        |
| Counters: Logic diagram, Truth table and timing diagrams of 4 bit ripple counter,                 |        |
| modulo-n counters,4bit Up-Down counter, Synchronous Counter, 4-bit counter, Design                |        |
| of Mod 3, Mod 5 and decade Counters using K-maps.                                                 |        |

- 1. Electronic devices and circuit theory by Boylestad, Robert Nashelsky
- 2. Electronic Devices Conventional Current Version by Thomas L. Floyd
- 3. David A. Bell "Electronic Devices and Circuits", 5th Edition, Oxford Uni. Press, 2015.
- 4. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edn, 2000, Prentice Hall.
- 5. Operational Amplifiers and Linear ICs, David A. Bell, 3rd Edition, 2011, Oxford University Press.

- 6. R.S.Sedha, "A Text book of Applied Electronics", 7th edition., S.Chand and Company Ltd. 2011.
- 7. Thomas L. Floyd, Digital Fundamentals, Pearson Education Asia (1994))
- 8. Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw.
- 9. Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.
- 10. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- 11. Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning.
- 12. R. L. Tokheim, Digital Principles, Schaum's Outline Series, Tata McGrawHill (1994)
- 13. Digital Electronics, S.K. Mandal, 2010, 1st edition, McGraw Hill

## **B.Sc. Semester – II**

#### Subject: ELECTRONICS

**Discipline Specific Course (DSC)** 

#### **Course No.-2 (Practical)**

| Course<br>No. | Type of<br>Course | Theory /<br>Practical | Credits | Instruction<br>hour per<br>week | Total No. of<br>Lectures/Hours<br>/ Semester | Duration<br>of Exam | Formative<br>Assessment<br>Marks | Summative<br>Assessmen<br>t Marks | Total<br>Marks |
|---------------|-------------------|-----------------------|---------|---------------------------------|----------------------------------------------|---------------------|----------------------------------|-----------------------------------|----------------|
| Course-<br>02 | DSCC              | Practic<br>al         | 02      | 04                              | 52 hrs                                       | 3hrs                | 25                               | 25                                | 50             |

Course No.2 (Practical): Title of the Course (Practical): ANALOG AND DIGITAL ELECTRONICS

#### List of the Experiments for 52 hrs / Semesters

#### PART- A (Any Four)

- 1. Study of JFET/MOSFET characteristics determination of parameters.
- 2. Study of single stage JFET amplifier.(frequency response and band width)
- 3. UJT characteristics and relaxation oscillator
- 4. SCR characteristics determination of IH and firing voltage for different gate currents.
- 5. Design of inverting and non-inverting amplifier using Op-amp & study of frequency response.
- 6. Op-amp inverting and non-inverting adder, subtractor and averaging amplifier.
- 7. Study of the zero-crossing detector and comparator.
- 8. Design and study of differentiator and integrator using op-amp for different input waveforms.
- 9. Design and study of Wien bridgeand RC phase shift oscillator using op-amp.
- 10. Design and study of first order high-pass and low-pass filters using op-amp.
- 11. Study of Collpitt's and crystal oscillator using transistor.
- 12. Astable multivibrator using IC555 timer.
- 13. Monostable multivibrator using IC555 timer

#### PART- B (Any Four)

- 14. Half Adder and Full Adder using (a) logic gates (b) using only NAND gates.
- 15. Half Subtractor and Full Subtractor(a) logic gates (b) using only NAND gates.
- 16. 4 bit parallel binary adder and Subtractor using IC7485.
- 17. Study of BCD to decimal decoder using IC7447
- 18. Study of the Encoders and priority encoders.
- 19. Study of Multiplexer and Demultiplexer using ICs.
- 20. Study of 2-bit and 4-bit magnitude comparators.
- 21. Study of Clocked RS, D and JK Flip-Flops using NAND gates.
- 22. Study of 4-bit asynchronous counter using JK Flip-Flop IC7476, modify to decade counter and study their timing diagrams.
- Study of 4-bit Shift Register SISO, modification to ring counter using IC 7495.
- 24. Digital to Analog converter using binary weighted resistor method, determination of resolution, accuracy and linearity error

**General instructions:** 

- 1. Minimum Four Experiments to be performed in each Part
- 2. Any new experiment may be added to the list with the prior approval from the BOS.

Scheme of Practical Examination (distribution of marks): 25 marks for Semester end examination

| 1. | Basicformula, Units & Nature of graph,                                            |            |       |
|----|-----------------------------------------------------------------------------------|------------|-------|
|    | CircuitDiagram/RayDiagram/Schematicdiagram                                        | - 05       | Marks |
| 2. | Tabular Column with quantities and unitmentioned, experimental skills.            | - 05       | Marks |
| 3  | Recordingofobservations, calculations and drawing graph and accuracyof the result | ''<br>- 11 | Marks |
| 4. | Viva-voce                                                                         | - 02       | Marks |
| 5  | Completed & Certified Journal                                                     | - 02       | Marks |
|    |                                                                                   | Total 25   | marks |

Note: Same Scheme may be used for IA( Formative Assessment) examination

## **B.Sc. Semester – II**

#### Subject: ELECTRONICS Open Elective Course (OEC-2) (OEC for other students)

| Course<br>No. | Type of<br>Course | Theory /<br>Practical | Credits | Instruction<br>hour per<br>week | Total No. of<br>Lectures/Hours<br>/ Semester | Duration<br>of Exam | Formative<br>Assessment<br>Marks | Summative<br>Assessmen<br>t Marks | Total<br>Marks |
|---------------|-------------------|-----------------------|---------|---------------------------------|----------------------------------------------|---------------------|----------------------------------|-----------------------------------|----------------|
| OEC-2         | OEC               | Theory                | 03      | 03                              | 42 hrs                                       | 2hrs                | 40                               | 60                                | 100            |

OEC-2: Title of the Course: BASIC ELECTRONICS-II

| Syllabus- OEC: Title- BASIC ELECTRONICS-II                                                  | Total Hrs: 42 |
|---------------------------------------------------------------------------------------------|---------------|
| Unit-I                                                                                      | 14 hrs        |
| Semiconductor Theory: Semiconductors: Semiconductor materials, structure of an              |               |
| atom, atomic structure of some elements, electron energies, energy bands in solids,         |               |
| metals, insulators, semiconductors, hole formation and its movement, types of               |               |
| semiconductors, intrinsic semiconductors, extrinsic semconductors, electron current and     |               |
| hole current, N-type and P-type semiconductor, majority and minority charge                 |               |
| carriers, effect of temperaure on extrinsic semiconductors.                                 |               |
| Sufficient number of numerical problems must be solved.                                     |               |
| Unit-II                                                                                     | 14 hrs        |
| Semiconductor Diode and its application: P-N junction theory, effect of temperature         |               |
| on barrier potential, current components in an open circuited P-N junction, biasing P-N     |               |
| junction, forward bias P-N junction, reverse bias P- N junction. Ideal and practical        |               |
| diodes, Formation of Depletion Layer, Diode Equation and I-V characteristics. Idea of       |               |
| static and dynamic resistance. Half- wave rectifier, PIV, average value voltage and load    |               |
| current, rms value, ripple factor, effciency of rectification. Full-wave rectifier, Peak    |               |
| Inverse Voltage, average values of output voltage and load current, rms value of load       |               |
| current, ripple factor, efficiency of rectification, Bridge rectifier working and           |               |
| comparision of rectifiers.                                                                  |               |
| Sufficient number of numerical problems must be solved.                                     |               |
| Unit-III                                                                                    | 14 hrs        |
| Power Supply: Block diagram of power supply, unregulated power supply, voltage              |               |
| regulation, load regulation, importance of filters in power supply, shunt capacitor filter, |               |
| its ripple factor, LC-section filter ,CLC filter, ripple factor, and comparision of these   |               |
| filters. Zener diode : constructon working and its V-I characterstics, Zener diode as       |               |
| voltage regulator-circuit diagram, load and line regulation, disadvantages.                 |               |
| Sufficient number of numerical problems must be solved.                                     |               |

1.Basics of Electronics (Solid State) – BL Theraja

- 2. Basics Electronics and linear circuits N N Bhargava and others.
- 3. Electronic principles -- B. Basavaraja Vol-1
- 4. Handbook of Electronics—Gupta Kumar
- 5. Basic and applied Electronics bandyopadhyay
- 6. Electronics-- Dr. R. K. Kar
- 7. Electronic Devices and Circuits David A. Bell
- 8. Principles of Electronics V. K. Mehta and Rohit Mehta

#### Details of Formative assessment (IA) for DSCC theory/OEC: 40% weight age for total marks

| Type of Assessment              | Weight age                                         | Duration   | Commencement          |
|---------------------------------|----------------------------------------------------|------------|-----------------------|
| Written test-1                  | 10%                                                | 1 hr       | 8 <sup>th</sup> Week  |
| Written test-2                  | 10%                                                | 1 hr       | 12 <sup>th</sup> Week |
| Seminar                         | 10%                                                | 10 minutes |                       |
| Case study / Assignment / Field | 10%                                                |            |                       |
| work / Project work/ Activity   |                                                    |            |                       |
| Total                           | 40% of the maximum marks<br>allotted for the paper |            |                       |

#### Faculty of Science 04 - Year UG Honors programme:2021-22

# GENERAL PATTERN OF THEORY QUESTION PAPER FOR DSCC/ OEC (60 marks for semester end Examination with 2 hrs duration)

Part-A

1. Question number 1-06 carries 2 marks each. Answer any 05 questions : 10 marks

#### Part-B

2. Question number 07-11 carries 05Marks each. Answer any 04 questions : 20 marks

#### Part-C

3. Question number 12-15 carries 10 Marks each. Answer any 03 questions : 30 marks

(Minimum 1 question from each unit and 10 marks question may have sub questions for 7+3 or 6+4 or 5+5 if necessary)

#### Total: 60 Marks

Note: Proportionate weight age shall be given to each unit based on number of hours prescribed.

